About Us
Biological control systems are typically very complex, involving multiple, interacted control nodes that function at different time scales. Outputs from these systems such as motor activity, heart rate, and brain activity often display seemingly “irregular” and “unstable” fluctuations with rich dynamic features (e.g., fractal patterns, phase synchronization and cross-frequency phase-amplitude modulation) that are beyond the understanding of traditional neurobiology. How to assess the underlying control mechanisms based on these fluctuations is a contemporary challenge in the field of biology. Concepts and methods derived from modern statistical physics and nonlinear dynamics appear to provide suitable, promising tools for assessing the integrated behaviors of these complex neurophysiological signals on a system level and from a network point of view. The goal of the Medical Biodynamics Program is to foster such translational research in sleep medicine and to create new data analysis methods, mathematical theories, and mechanistic, experimentally based models for the study of neurophysiological systems. We are interested in a broad range of neurophysiological systems, from the cardiovascular system to the circadian system, to the brainstem system’s generation of sleep, through the cortical systems generating complex cognition.